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Summary 

One key objective of the population health sciences is to understand why one social group has 

different levels of health and well-being compared to another. While several methods have been 

developed in economics, sociology, demography, and epidemiology to answer these types of 

questions, a recent method introduced by Jackson and VanderWeele (2018) provided an update to 

decompositions by anchoring them within causal inference theory. In this paper, we demonstrate how 

to implement the causal decomposition using Monte Carlo integration and the parametric g-formula. 

Causal decomposition can help to identify the sources of differences across populations and provide 

researchers a way to move beyond estimating inequalities to explaining them and determining what 

can be done to reduce health disparities. Our implementation approach can easily and flexibly be 

applied for different types of outcome and explanatory variables without having to derive 

decomposition equations and can also decompose functions of outcomes, such as period life 

expectancy, that are not based around a simple comparison of means or proportions. We describe the 

concepts of the approach and the practical steps and considerations needed to implement it. We then 

walk through a worked example where we investigate the contribution of smoking to sex differences 

in mortality in South Korea using two different outcomes and contrasts: the age-adjusted mortality 

risk ratio and the absolute difference in period life expectancy. For both examples, we provide both 

pseudocode and R code using our package, cfdecomp. Ultimately, we outline how to implement a very 

general decomposition algorithm that is grounded in counterfactual theory but still easy to apply to a 

wide range of situations.  

 

Keywords: decomposition; causal inference; Monte Carlo; parametric g-formula; population models; 

health disparities. 
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Key messages 

• Causal or counterfactual-based decomposition methods are of growing importance in 

epidemiology and the population health sciences. 

• We develop and demonstrate a highly flexible implementation of the causal decomposition 

that is grounded in counterfactual theory but still easy to apply to a wide range of questions 

without having to derive specialized decomposition equations. 

•  We demonstrate how to use our decomposition algorithm to estimate the contribution of 

smoking to sex differences in two different summary mortality outcomes in South Korea, 

finding that smoking explains 27% of the male mortality advantage at ages 50 and above.  
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Introduction 

A central aim of the population health sciences is to understand why one social group has different 

levels of health and well-being compared to another. Recent examples of this question include 

understanding why Hispanics have worse congenital heart disease outcomes compared to non-

Hispanics (1), why adult mortality is higher in urban compared to rural Indonesia (2), and why poorer 

individuals in Finland have higher mortality compared to more affluent individuals (3). By identifying 

the sources of differences across populations, these studies provide an important first step for 

determining what can be done to reduce health disparities. 

Decomposition analyses are one of the key tools for understanding the sources of differences 

in an outcome between groups and can help to move researchers from estimating to explaining health 

inequalities. At their core, decomposition analyses seek to determine how much of an observed 

difference in an outcome between two groups is due to the differing distribution of specific causes of 

that outcome between the groups. For example, in the example above on Finland, researchers may 

ask "how much of the mortality difference between rich and poor individuals is due to the higher 

prevalence of smoking among poorer compared to richer individuals?" 

While such questions may sound like mediation analysis (4–8), there is a key difference 

between mediation and decomposition. In a causal mediation analysis, we would first estimate the 

causal effect of poverty on mortality, and then identify how much of this effect is driven through 

poverty’s causal effect on smoking. In decomposition analysis, on the other hand, we are interested in 

how much smoking contributes to observed differences in mortality between poor and non-poor and 

are agnostic to how much of the difference in smoking between poor and non-poor is due to the 

causal effect of smoking and how much due to confounding causes. This crucial difference (depicted 

graphically using DAGs in Figure 1) has consequences for the analytical approach to be taken and 

requires fewer confounding variables to be accounted for. Importantly, in a decomposition analysis, 
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since we are not attempting to estimate the causal effect of the group variable (the exposure in a 

mediation in analysis), we do not have to contend with the open issue of whether causal effects can 

be estimated for non-manipulable characteristics such as race (9). 

Various methods have been developed across disciplines for conducting decomposition 

analyses. Regression decompositions, such as the Oaxaca-Blinder (OB) decomposition (10,11) and its 

nonlinear extensions (12,13), use individual-level data and are employed frequently in economics and 

sociology (14), while approaches using aggregate level data are common in demography (15–18). 

Recent advances in epidemiology provide a new perspective to decompositions, situating them in 

causal inference and counterfactual theory (2,9,19,20). Among these, Jackson and VanderWeele 

(2018), provide an important advance by framing decomposition analyses around interventions to 

reduce disparities, where the importance of specific characteristics to differences between populations 

is evaluated through hypothetical intervention scenarios to equalize these characteristics between 

groups (19).  

In this paper, we demonstrate a simple way to implement the counterfactual decomposition 

using parametric models and Monte Carlo integration. We focus on a worked example that asks, "How 

much of the observed sex-difference in mortality in South Korea is due to the higher prevalence of 

smoking among men compared to women?" and demonstrate how to decompose sex-differences in 

two different summary contrasts: the age-adjusted 1-year mortality risk ratio between men and women 

and the absolute difference in period life expectancy at age 50 between men and women. Our approach 

can be easily applied within common statistical packages or implemented with our R package, cfdecomp 

(21). Our approach is based on a straightforward algorithm for estimating counterfactual 

decompositions for any type of outcome distribution without having to derive decomposition 

equations. As we will demonstrate, the use of Monte Carlo integration has the added advantage of 

allowing us to decompose complicated summary measures such period life expectancy, which because 
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they are not a simple contrast of population means or proportions, are more challenging to decompose 

with closed-form approaches. 

 

 

Figure 1. Directed Acyclic Graphs (DAGs) of typical Causal Mediation and Decomposition 

compared. 
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A Counterfactual Approach to Decomposition 

Concepts 

We motivate and develop our approach through the question, “what is the contribution of smoking 

to sex differences in mortality in South Korea?” We adopt a counterfactual perspective and define 

“contribution” by asking, “how large would the difference in mortality be if men and women had an 

equal smoking prevalence?”  

 Our first main step is to specify exactly what level of smoking prevalence we are equalizing 

men and women to. When the relationship between an outcome (such as mortality) and a mediator 

(such as smoking) is non-linear, this choice can affect the contribution estimate (18). Therefore, the 

choice of the reference distribution should be informed by substantive concerns (e.g. what makes 

sense from a policy perspective?) and inferential concerns (e.g. certain values may be outside the range 

observed in the data and should therefore be avoided). We choose to set men to have the smoking 

prevalence of women, since this maps to a clear intervention that public health policy makers may 

seek to achieve. 

The second main step is to specify a summary population measure. This is the measure that 

we will use to compare the mortality of men and women in South Korea. We consider two related 

summary population measures: the age-adjusted one-year risk of death and period life expectancy at 

age 50 (period life expectancy is a function of the 1-year risks of death across ages).  

Third, we need to specify contrasts of these summary measure between men and women (i.e. 

how are we going to compare the two summary measures?). For the one-year risk of death, we consider 

the risk ratio for men relative to women (adjusted for age) and for period life expectancy, we consider 

the absolute difference between men and women.  

Based on steps 1 to 3, we can construct our estimate of the "contribution" of smoking by 

seeing how much the difference in the summary measures between men and women reduces when 
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we set men to have the same smoking prevalence as women. For example, for life expectancy, we 

would compare the absolute difference in life expectancy between men and women in the observed 

data to the difference in life expectancy between men and women in a counterfactual world where we 

set men to have the same smoking levels as women. We could then estimate the contribution of 

smoking as the percent reduction in the male-female life expectancy disparity Note that this 

contribution is not bounded between 0 and 1 and could result in negative contributions or 

contributions greater than 100%. This is not an issue however; this situation occurs in both mediation 

and decomposition analyses when the indirect effect (the association via the mediators) or the direct 

effect (the association not via the mediators) are of opposite signs, and hence partially cancel each 

other out in the total effect. Indeed, many recent papers using mediation and decomposition analyses 

have found contribution estimates above 100 or below 0 (2,19,22). Contribution estimates below 0 or 

above 1 could also occur due to imprecision in the underlying estimates. For this reason, it is important 

to present and interpret such estimates with their accompanying standard error. In Appendix 3, we 

provide a more general formal exposition of the causal decomposition. 

  

Parametric Modeling and Monte Carlo-Based Estimation 

The core estimand in our decomposition is the counterfactual summary measure of mortality for men 

if they were set to have the same smoking distribution as women. Estimating this counterfactual 

requires (1) a way to match the smoking distribution between men and women, and (2) a way to re-

estimate mortality as a function of the new smoking distribution. Importantly, since we are interested 

in the effect of changing the level of smoking on mortality, our approach to re-estimating mortality 

needs to adjust for the confounders of the smoking-mortality relationship. Our solution to these two 

issues is to use the parametric g-formula and Monte Carlo integration (7,23–25). This entire approach 

can be estimated by following a straightforward algorithm: 
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Decomposition Algorithm 

Step 0: Specify starting decisions 

a. Decide on a summary measure. 

b. Decide on a contrast. 

c. Decide on the reference group for the mediator values. 

Step 1: Estimate relationships in the data  

a. Fit regression model(s) for the mediator(s) of interest with confounders of the mediator-

outcome relationship as covariates. 

b. Fit regression model(s) for the outcome with the mediator(s) of interest and same 

confounders as the mediator model. 

Step 2: Form the Natural Course Pseudo-Population.  

a. Use the coefficients from the mediator model(s) with the observed confounder values to 

simulate mediator values for each individual in the data.  

b. Use the coefficients from the outcome model(s) together with the observed confounder 

values and the new simulated mediator values to simulate the outcome for each individual 

in the data. This is the natural-course pseudo-population. 

c. Within this natural course pseudo-population, estimate the summary measure for both 

groups and then form the contrast of interest across groups. 

Step 3: Form the Counterfactual Pseudo-Population 

a. For the non-reference group, use the coefficients from the mediator model(s) with the 

observed confounder values to simulate counterfactual mediator values that follow the 

distribution of the mediator in the reference group. 
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b. Use the coefficients from the outcome model(s) together with the observed confounder 

values and simulated mediator values (counterfactual for the non-reference group and 

natural course for the reference group) to simulate the outcome for each individual in the 

data. This is the counterfactual pseudo-population. 

c. Within this counterfactual pseudo-population, estimate the summary measure for both 

groups and then form the contrast of interest across groups. 

Step 4: Compare the contrast of interest in the natural-course and counterfactual pseudo-

populations. 

To estimate standard errors and to produce stable estimates of the contribution, we have to 

address two types of variability. First, since we are drawing values of the mediators and outcomes 

from probability distributions, the exact values assigned to individuals can change across multiple 

draws. This results in the estimate of the contribution also changing across draws (known as Monte 

Carlo error). To reduce this error, we conduct Steps 2 and 3 multiple times, each time drawing a new 

set of mediator and outcome values. We then construct the contrasts for each draw and then average 

across all these draws to produce stable natural course and counterfactual estimates, before calculating 

the contribution in Step 4. 

Second, because our results are based on a sample, we need to account for sampling variability. 

This is especially important for the construction of confidence intervals around the estimates. We use 

a bootstrap procedure to capture this uncertainty, drawing with replacement a fresh sample of size 

equal to the original data before step 1, conducting the entire analysis k times, and then estimating the 

standard error of our decomposition estimates as the standard deviation of the estimates from the k 

bootstrap samples. 

 Our algorithm above treats the variables involved as time-fixed, which may not always be 

appropriate (5,8). The algorithm can be easily expanded, however, to allow for time-varying variables; 
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we present a time-varying version of the decomposition algorithm above in Appendix 2 based on 

Westreich et al. (2012) (26). A second important note is that the natural course is often used in g-

formula analyses to validate the estimation models rather than as part of the estimand. In our 

algorithm, however, the natural course forms part of the contribution estimate. We use the natural 

course as the reference in the contribution rather than compare two counterfactual scenarios (such as 

one where all individuals smoke and one where no individuals smoke) so that the counterfactual 

scenarios are compared to the "as is" observed conditions. This approach is also advocated for by 

Hernán and Robbins (2016) as a more realistic comparison group for counterfactual analyses (27). 

 Both the size of and contribution of specific mediators to a health disparity are dependent on 

the scale that the disparity is measured on. For example, a difference in mortality between two 

populations and the contribution of smoking to this difference may vary based on whether the 

disparity is measured as a mortality risk ratio, a survival risk ratio, or an absolute difference in mortality 

rates. A major strength of our decomposition algorithm is that the researcher is not limited to one 

scale and can estimate and explain the disparity using multiple measures. This is because the 

decomposition algorithm works by first generating pseudo populations based around model-predicted 

values rather than by comparisons of model coefficients. 
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Empirical Example: Smoking’s Contribution to Sex Differences in Life 

Expectancy in South Korea 

We now demonstrate the application of the approach we outlined in the previous section to real data 

from the Korean Longitudinal Study of Aging. In the interest of providing a simple pedagogical 

example, we conduct a stylized analysis and thus the results should be interpreted cautiously. A more 

rigorous analysis that fully explores and accounts for the different sources of confounding and 

measurement error is outside the scope of this example, though the results of our example are in line 

with other literature on the contribution of smoking to sex differences in mortality (28). 

 

Data: Korean Longitudinal Study of Aging 

We use data from the 2006-2012 waves of the Korean Longitudinal Study of Aging, a nationally 

representative survey of South Korean individuals ages 45 and above (29). We use data on adults ages 

50 and above from the baseline 2006 waves, using the subsequent waves for mortality follow-up. Our 

total sample consists of 7,615 individuals with 42,405 person-years of follow-up. We convert our data 

from a person to person-age format, with one observation for every age lived in the survey, along with 

a dichotomous indicator for whether an individual survived through or died on that age. Individuals 

leave the survey through death, censoring from loss to follow-up before 2012, or from censoring at 

the end of the survey period in 2012. 

 

Main variables: outcome, mediator, and confounders 

Our outcome of interest is dichotomous indicator for whether an individual died or survived to the 

next age and our primary mediator is a dichotomous indicator for whether an individual reported ever 

regularly smoking cigarettes. We adjust for the following potential confounders of the smoking-
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mortality relationship: age, how frequently an individual reported drinking alcohol, schooling, 

urbanicity, and marital status. 

 

Step 0: Specify a summary measure, contrast, and reference group 

We consider two summary measures of mortality, the age-adjusted one-year risk of death (surviving 

to the next age) and period life expectancy at age 50. For the first summary measure, our contrast of 

interest is the risk ratio of mortality for men relative to women. We construct this contrast using the 

following Poisson regression on person-year observations (adjusting for age using indicator variables 

for five-year age groups): 

𝑙𝑜𝑔(𝐸[𝑌|𝐹𝑒𝑚𝑎𝑙𝑒, 𝐴𝑔𝑒]) = 𝛼0 + (𝛼1 ∙ 𝐹𝑒𝑚𝑎𝑙𝑒) + ∑(𝛼𝑖

𝑖

∙ 𝐴𝑔𝑒𝑔𝑟𝑖) 

where 𝛼1 is our estimate of interest. We use a Poisson regression here to just estimate the summary 

contrast (the exponent of 𝛼1) but could have alternatively directly estimated an age-standardized risk 

ratio from the data. Importantly, because we are interested in the observed difference between men 

and women (adjusting for just age), we do not add any confounders to this model (19).  

 To construct period life expectancy, we first estimate age-specific mortality rates from the 

person-year data by dividing the number of deaths in each 5-year age group by the person-years of 

exposure in that same age group separately for men and women. Next, we convert these age-specific 

mortality rates into period life expectancies using standard life table techniques (30). Our contrast for 

this outcome is the absolute difference in life expectancy at age 50 between men and women. 

 For both summary measures and contrasts, we set the smoking levels among men to be equal 

to those among women as our counterfactual scenario. 
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Step 1: Estimate relationships in the data (using regression models) 

Mediator model 

We model the probability of ever regularly smoking for men and women using the following logistic 

regression model: 

𝑙𝑜𝑔𝑖𝑡(𝐸[𝑆𝑚𝑘|𝐹𝑒𝑚𝑎𝑙𝑒, 𝐴𝑔𝑒, 𝐶])

= 𝛽0 + (𝛽1 ∙ 𝐹𝑒𝑚𝑎𝑙𝑒) + (𝛽2 ∙ 𝐴𝑔𝑒) + (𝛽3 ∙ 𝐴𝑔𝑒 ∙ 𝐹𝑒𝑚𝑎𝑙𝑒) + ∑(𝛽𝑐𝑖
∙ 𝐶𝑖)

𝑖

  

Here, 𝑆𝑚𝑘 is a binary variable for whether an individual self-reported ever regularly smoking, 𝑆𝑒𝑥 is 

indicator variable for female, 𝐴𝑔𝑒 is continuous measurement of age, and 𝐶𝑖 are the confounders 

described previously. We use this model to estimate the group -> causes association pathway in 

Figure 1b. We include the confounders in this model not to adjust for confounding but rather to 

allow us to predict and match the sex-specific smoking prevalence within confounder strata. 

 

Outcome model 

We model mortality as a function of smoking, sex, and the confounders by fitting the following logistic 

regression model: 

𝑙𝑜𝑔𝑖𝑡(𝐸[𝑌|𝐹𝑒𝑚𝑎𝑙𝑒, 𝑆𝑚𝑘, 𝐴𝑔𝑒, 𝐶])

= 𝛿0 + (𝛿1 ∙ 𝐹𝑒𝑚𝑎𝑙𝑒) + (𝛿2 ∙ 𝑆𝑚𝑘) + (δ3 ∙ 𝐹𝑒𝑚𝑎𝑙𝑒 ∙ 𝑠𝑚𝑘) + (𝛿4 ∙ 𝐴𝑔𝑒) + (𝛿5 ∙ 𝐴𝑔𝑒

∙ 𝐹𝑒𝑚𝑎𝑙𝑒) + (𝛿6 ∙ 𝐴𝑔𝑒 ∙ 𝑆𝑚𝑘) + ∑(𝛿𝑐𝑖
∙ 𝐶𝑖)

𝑖

  

We use this model to estimate the causes -> outcome effect pathway in Figure 1b. 

 

Steps 2 and 3: simulation to form the natural course and counterfactual pseudo-populations 

Based on the results of the two models, we simulate the natural course and counterfactual pseudo-

populations for both men and women. In Figure 2, we provide a step-by-step example of how to use 
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the regression estimates to form the simulated values for a single male individual in the data. The 

pseudocode in Figure 3 and R code in the supplementary material demonstrate how to do this for all 

individuals in the data using common statistical software. 

  

Steps 4: Calculate and compare the contrasts of interest and determine the percent contribution of smoking 

Once pseudo-populations have been created, the final step is to calculate the contrasts of interest. We 

then estimate the contribution of smoking to sex differences in mortality by measuring how much the 

contrasts of the two summary measures changes between the natural course and counterfactual 

worlds.  All steps needed to estimate the decomposition are also shown as pseudocode in Figure 3.  

We also provide code for how to estimate the example in R using our function cfdecomp in the 

supplementary material.  

 

Results 

Descriptive characteristics 

Mean age was 66.2 for men and 67.4 for women (Table 1). A greater share of men was currently 

married compared to women (93% compared to 64%) due to a much higher proportion of 

widowhood among women (33% compared to 5%). There were important health and socioeconomic 

differences between men and women. Men were far more likely to smoke (61% compared to 4%) and 

drink regularly (proportion who reporting drinking at least once a week: 41% compared to 4%). Men 

were also substantially more likely to have completed more than middle school (46% compared to 

17%).  

 

Decomposition of the age-adjusted one-year risk of mortality 

Men were 1.89 times (95% CI: 1.65, 2.14) more likely to die within one-year of an interview compared 
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to women (after adjusting for age) (Table 2). After setting men to have the same smoking distribution 

of women, this risk ratio reduced to 1.65 (95% CI: 1.38, 1.92). The resulting change corresponds to a 

(1 - 0.65/0.89) = 28% (95% CI: 0.08, 0.47) contribution of smoking to sex differences in the age-

adjusted one-year risk of mortality. 

 

Decomposition of period life expectancy at age 30 

After converting the mortality risks into period life expectancy, we observe a large, 5.9-year difference 

(95% CI: -7.2, -4.4) in life expectancy at age 50 between men and women (Table 3). When we equalize 

levels of smoking between men and women, this difference in life expectancy reduces to just 4.3 years 

(95% CI: -5.7, -2.8), corresponding to a (1 - 4.3/5.9) = 27% (95% CI: 0.10, 0.44) contribution of 

smoking to sex-differences in adult life expectancy in South Korea. 
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Figure 2. A step-by-step example of how to use the regression estimates to form the simulated values 

for a single male individual in the data. 
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Figure 3. Pseudocode of a decomposition example. 
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Table 1 Descriptive characteristics of the sample at baseline, adults ages 50+, Korean 

Longitudinal Study of Aging, 2006. 

 Men  Women 

 Mean SD  Mean SD 

Age 66.2 9.0  67.4 9.9 

 % N  % N 

Marital status      

Never married 0.01 105  0.00 100 

Married/partnered 0.93 17147  0.64 15350 

Separated/divorced 0.02 349  0.02 499 

Widowed 0.05 893  0.33 7962 

Completed schooling      

None 0.09 1706  0.31 7299 

Elementary or middle  0.45 8249  0.53 12574 

More than middle  0.46 8539  0.17 4038 

Rural 0.27 4987  0.27 6534 

Ever smoker 0.61 11276  0.04 1015 

Alcohol consumption      

None/less than once a month 0.43 7868  0.87 20808 

One to several times a month 0.16 3040  0.08 2000 

One to several times a week 0.28 5119  0.04 906 

Most days of the week 0.05 935  0.00 113 

Every day of the week 0.08 1532  0.00 84 

 
 
  



20 

 

 
Table 2 Estimates of the contribution of smoking to the age-adjusted one-year mortality risk ratio 

using the counterfactual decomposition method, Korean Longitudinal Study of Aging, 2006-2012. 

 Natural course RR 

(95% CI) 

Counterfactual RR 

(95% CI) 

Percent contribution 

(95% CI) 

Mortality risk ratio for 

men relative to women 

1.89 

(1.65, 2.14) 

1.65 

(1.38, 1.92) 

28% 

(8%, 47%) 

 
 
 
 
 
 
 

Table 3 Estimates of the contribution of smoking to sex differences in period life expectancy at 

age 50 (e50) using the counterfactual decomposition method, Korean Longitudinal Study of Aging, 

2006-2012. 

 Natural 

Course e50 

Natural 

Course ∆ 

Counterfactual 

e50 

Counterfactual 

∆ 

Percent 

contribution 

Women 

(95% CI) 

36.8 

(35.9, 37.7) 
    

Men 

(95% CI) 

30.9 

(30.0, 31.8) 

-5.9 

(-7.2, -4.4) 

32.5 

(31.3, 33.7) 

-4.3 

(-5.7, -2.8) 

27% 

(10%, 44%) 
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Discussion 

We introduce a general yet easily applied procedure for implementing counterfactual decompositions 

using the parametric g-formula and Monte Carlo integration (19). We demonstrate this approach by 

estimating the contribution of smoking to sex differences in mortality in South Korea. We first 

decompose the simple contrast of the age-adjusted mortality risk ratio for men relative to women and 

then demonstrate how to decompose functions of population risks by decomposing the sex difference 

in period life expectancy at age 50.  We find that the large smoking difference between men and 

women in South Korea explains 27-28% of the age-adjusted mortality risk ratio and sex difference in 

life expectancy at age 50. 

 The age-adjusted mortality risk could also be decomposed using closed-form decomposition 

equations (12,13,19). The algorithm we outline does not replace closed-form decomposition 

approaches but rather provides an alternative using simulations, which provides three main 

advantages. First, we can decompose summary measures based on any outcome distribution in the 

GLM family without having to derive or use separate decomposition equations depending on whether 

an outcome is binomially, Poisson, or normally distributed. Moving between outcome distributions 

simply requires changing the regression type used to model the outcome in the decomposition 

algorithm.  

 The second advantage of the simulation algorithm is that we can easily switch between 

different contrasts since we effectively re-generated entire micro-populations for the observed and 

counterfactual worlds. For example, once natural course and counterfactual pseudo-populations have 

been generated, we decomposed the risk ratio by estimating Poisson regressions of mortality on sex 

within both pseudo-populations and measuring how the risk ratio changes between the natural course 

and counterfactual worlds. If we were instead interested in decomposing the odds ratio, we would 

simply switch from Poisson to logistic regressions and compare the odds ratios. This pseudo-
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population perspective is powerful because it easily allows for comparisons of any contrast we can 

think of. Indeed, the third advantage of the simulation approach to decomposition is that we can 

decompose summary measures that are based around complex functions of population means and 

proportions. Period life expectancy is an example of such a summary measure since it is a function of 

age-specific mortality risks.  

Despite these advantages, our algorithm comes with important trade-offs compared to existing 

decomposition implementations. Compared to the closed-form equations our approach requires 

substantial computational power and time. This is not a trivial consideration and decompositions with 

large datasets may take hours to even days to complete even when considerable computational power 

is available.  Furthermore, as with any method seeking to provide causal explanations, the causal 

validity of the decomposition results hinges on assumptions of exchangeability (also known as no 

unmeasured confounding), common support (positivity), and consistency. We discuss these three 

issues in more detail in Appendix 1 for interested readers. 

 

Conclusions 

Decomposing the sources of differences in health and other outcomes is a key research endeavor in 

epidemiology and other population health sciences. We describe an implementation of the 

counterfactual decomposition that builds on and generalizes the rich existing body of work on 

decomposition methods in the health and social sciences. The approach provides a highly flexible and 

easily implemented way of estimating decompositions that are grounded in potential outcomes and 

counterfactual theory and applicable to a wide range of population health questions.  
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Appendix 1: Causal Inference Considerations 
 

Exchangeability  

Results from our approach are only valid if the underlying assumption of no unmeasured confounding 

of the mediator-outcome relationship is correct (exchangeability). Even with a large number of 

confounders, this is a strong assumption and thus the results need to be interpreted cautiously with 

consideration to the magnitude of bias that potential unmeasured confounders may introduce. For 

example, smoking is likely correlated with other unhealthy behaviors that also affect mortality that we 

were not able to adjust for. Therefore, when we “intervene” on smoking to produce our 

decomposition estimate, we are also change the other unobserved behaviors correlated with smoking. 

Thus, our decomposition estimate of the contribution of smoking to sex differences in life expectancy 

is likely an overestimate. Bias analyses may be a promising way to evaluate the causal validity of the 

decomposition estimates.1–3 Importantly, since we are interested in the observed difference between 

social groups, we deliberately do not equalize levels of the confounders of the social group-outcome 

relationship across social groups.  

 

Positivity 

One conceptual issue that may arise is a lack of common support (also known as positivity) of the 

mediator distribution across groups. For example, suppose we are interested in equalizing the 

distribution of smoking between men and women with very high levels of schooling. If the low SES 

group has total schooling values of 6 to 9 and the high SES group has values ranging from 6 to 12, it 

cannot be determined from the data how the low schooling group would respond to having schooling 

values above 9. In such a case, one may be forced to assume that the relationship between total 

schooling values above 9 in the low SES group is the same as that of the high SES group or be willing 

to extrapolate the model estimates outside the range of observed data. 
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Consistency 

An important issue is whether “interventions” to equalize levels of the mediators satisfy the 

consistency assumption and thus can be justified as causal effects - a prerequisite for providing the 

decomposition results a causal interpretation. For example, we estimate the contribution of smoking 

to sex differences in life expectancy using a measure of ever smoking; therefore, the change in 

mortality produced by a real smoking cessation intervention may not be well approximated by a 

contrast of ever and never smokers. In this case, our example is better conceptualized as a thought 

experiment that asks what if the share of men who ever started smoking (and survived beyond age 30) 

never exceeded the share of ever smokers among women? 
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Appendix 2: Decomposition with time-varying variables 

When the process being investigated involves time-varying variables, including potentially time-

varying confounding variables or intermediate confounders, the algorithm to perform decomposition 

becomes more involved.4 We here denote the steps that could be taken in a cross-lagged model. Note 

that since this describes a decomposition model, the exposure variable (group) is time-fixed and hence 

is not estimated. In a mediation analysis -- rather than a decomposition -- with a time-varying exposure, 

the exposure should also be modelled and simulated if a ‘natural course scenario’ (a replication of the 

empirical data, often used for validation purposes) is required. 

 

Decomposition Algorithm for Time-varying Covariates 

Step 0: Specify starting decisions 

d. Decide on a summary measure. 

e. Decide on a contrast. 

f. Decide on the reference group for the mediator values. 

Step 1: Estimate relationships in the data  

Fit regression model(s) for the time-varying variables of interest (time-varying confounders, mediators, 

and outcomes) with confounders of the mediator-outcome relationship as covariates. For time-varying 

variables that are independent of the measured covariates, a model with time itself (as a categorical 

variable, or e.g. modelled with splines) as a covariate, and potentially with baseline covariates, could 

be used. Note that separate models can be fitted per group, or interactions with a group identifier 

could be used. An example specification of a cross-lagged model could be: 

𝑓(𝐸[𝑀𝑡+1|𝐶𝑡, 𝑋𝑡, 𝑌𝑡]) = 𝛽0 + 𝛽1 ∙ 𝐶𝑡 + 𝛽2 ∙ 𝐶 +  𝛽3 ∙ 𝑋𝑡 + 𝑌𝑡 

Where f is an appropriate link function, the index refers to time, M refers to a mediator of interest, C 

to time-varying confounders, X to other time-varying mediators whose joint contribution we are 



28 

 

interested in, and Y to a time-varying outcome variable that is also allowed to affect future values of 

the mediator(s). 

Step 2: Form the Natural Course Pseudo-Population.  

d. Take observed values from the empirical data at t=1.  

e. Using the observed values at t=1, use the models for the time-varying variables to simulate 

values at t=2. 

f. Akin to step 2a, continue with taking simulated values at t to simulate values at t+1 until 

the end of follow-up. This is the natural course pseudo-population. 

g. Within this natural course pseudo-population, estimate the summary measure for both 

groups and then form the contrast of interest across groups. 

Step 3: Form the Counterfactual Pseudo-Population.  

a. Take observed values from the empirical data at t=1. For the non-references group(s), 

draw the mediator values from the distribution of the reference group (see Wang & Arah 

2015 for the difference between the controlled direct effect and the stochastic controlled 

direct effect).5 If the distribution of the mediators in the reference group changes over 

time, this should be taken into account. 

b. Using the observed (and now partially altered) values at t=1, use the models for the time-

varying variables to simulate values at t=2. For the non-reference group(s), simulate 

mediator values that follow the distribution of the reference group. 

c. Akin to step 2a, continue with taking simulated values at t to simulate values at t+1 until 

the end of follow-up, and for the non-reference groups continue simulating mediator 

values that follow the distribution of the reference group. This is the counterfactual 

pseudo-population. 
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d. Within this counterfactual pseudo-population, estimate the summary measure for both 

groups and then form the contrast of interest across groups. 

Step 4: Compare the contrast of interest in the natural-course and counterfactual pseudo-

populations. 

To estimate standard errors and to produce stable estimates of the contribution, we have to 

address two types of variability. First, since we are drawing values of the mediators and outcomes 

from probability distributions, the exact values assigned to individuals can change across multiple 

draws. This results in the estimate of the contribution also changing across draws (known as Monte 

Carlo error). To reduce this error, we conduct Steps 2 and 3 multiple times, each time drawing a new 

set of mediator and outcome values. We then construct the contrasts for each draw and then average 

across all these draws to produce stable natural course and counterfactual estimates, before calculating 

the contribution in Step 4. 

Second, because our results are based on a sample, we need to account for sampling variability. 

This is especially important for the construction of confidence intervals around the estimates. We use 

a bootstrap procedure to capture this uncertainty, drawing with replacement a fresh sample of size 

equal to the original data before step 1, conducting the entire analysis k times, and then estimating the 

standard error of our decomposition estimates as the standard deviation of the estimates from the k 

bootstrap samples. 
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Appendix 3: Formal counterfactual approach 

Our approach requires that we estimate what an outcome (𝑌) would have been among one group 

(group B) if they were set to have the same distribution of the mediator (𝑀) as another group (group 

A). We first define the potential outcome for an individual when the mediator M is set to a specific 

value m as 𝑌(𝑀 = 𝑚). We denote the distribution of 𝑀 in group A as 𝑓𝑀
𝐴 and that in group B as 𝑓𝑀

𝐵 

and the potential outcome for an individual when the mediator is set to a value drawn from this 

distribution as 𝑌(𝑀~𝑓𝑀
𝐴) and 𝑌(𝑀~𝑓𝑀

𝐵), respectively. Equalizing 𝑀 as described , we are now 

interested in the value of the outcome (𝑌) for individuals in group B when the mediator (𝑀) is 

redistributed to 𝑓𝑀
𝐴: 𝑌𝐵(𝑀~𝑓𝑀

𝐴)). 

 Next, we need to formally define our summary measure and population contrast of interest. 

For this exposition, we will use the mean of Y as our summary measure and the difference in this 

mean between groups A and B, 𝐸[𝑌𝐴]  −  𝐸[𝑌𝐵], as our contrast. Given this summary measure and 

contrast, we are now interested in the mean difference in the outcome between groups when the 

mediator (𝑀) among group B has been redistributed to 𝑓𝑀
𝐴: 𝐸[𝑌𝐴]  −  𝐸[𝑌𝐵(𝑀~𝑓𝑀

𝐴)]. The second 

term is the counterfactual potential outcome since it is not directly observable in the data. One way to 

reveal how to estimate this quantity is by expanding the observed mean outcome among group B by 

conditioning on the different values of the mediator (𝑀) found in 𝑓𝑀
𝐵: 

𝐸[𝑌𝐵] = ∑ 𝐸[𝑀 = 𝑚, 𝐵] ∙ 𝑃(𝐵)

𝑚∈𝑓𝑀
𝐵

(2)  

Within this expression, the distribution of the mediator (𝑀) for group B, 𝑓𝑀
𝐵, is captured by the set of 

probabilities, 𝑃(𝑀 = 𝑚|𝐵), for each value of m found in 𝑓𝑀
𝐵. Therefore, if we wanted to estimate 

what the expected value of 𝑌𝐵 would be if group B had the same distribution of the mediator as group 

A (𝐸[𝑌𝐵(𝑀~𝑓𝑀
𝐴)]), we could replace the probabilities of observing each value of 𝑀 in group B with 
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the corresponding probability of observing that value in group A (𝑃(𝑀 = 𝑚|𝐴)). Then we would 

estimate the potential outcome as: 

𝐸[𝑌𝐵(𝑀~𝑓𝑀
𝐴)] = ∑ 𝐸[𝑀 = 𝑚, 𝐵] ∙ 𝑃(𝐴)

𝑚∈𝑓𝐴( )

(3)  

This is simply a direct standardization within confounder strata. 

Unfortunately, in most observational research, this approach will not lead to a correct estimate 

of the counterfactual average potential outcome since it  assumes that the expected value of the 

outcome 𝑌 when 𝑀 is set to a specific value 𝑚𝑖 among those with 𝑚 ≠ 𝑚𝑖 can be estimated as the 

observed expected value for those with 𝑚 = 𝑚𝑖. This condition, known as exchangeability,6 is often 

a strong assumption given that there are likely other systematic ways those with different values of 𝑀 

differ that would affect their value of 𝑌. Therefore, in the presence of confounding variables (𝐶), 

𝐸[𝑌𝐵(𝑀~𝑓𝑀
𝐴)] ≠ ∑ 𝐸[𝑌|𝑀 = 𝑚, 𝐵] ∙ 𝑃(𝑀 = 𝑚|𝐴)

𝑚∈𝑓𝑀
𝐴 . However, this equality will hold within 

strata of 𝐶: 

𝐸[𝐶 = 𝑐] =  ∑ 𝐸[𝑀 = 𝑚, 𝐶 = 𝑐, 𝐵] ∙ 𝑃(𝐶 = 𝑐, 𝐴)

𝑚∈𝑓𝑀
𝐴

(4)  

This is because within strata, there is no difference in the value of the confounders between those 

with different levels of the mediator. Therefore, differences in stratum-specific potential outcomes are 

not confounding the effect of the mediator with the effect of different confounder values. 

We can now estimate 𝐸[𝑌𝐵(𝑀~𝑓𝑀
𝐴)] by aggregating these conditional potential outcome 

estimates across the strata of 𝐶 and 𝑀: 

𝐸[𝑌𝐵(𝑀~𝑓𝑀
𝐴)] = ∑ ∑ 𝐸[𝑌|𝑀 = 𝑚, 𝐶 = 𝑐, 𝐵] ∙ 𝑃(𝑀 = 𝑚|𝐶 = 𝑐, 𝐴) ∙ 𝑃(𝐶 = 𝑐, 𝐵)

𝑓𝑀
𝐴𝐶

(5) 
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Estimating this equation amounts to first stratifying by all values of 𝐶.  Next, within each of these 

strata, estimating what the outcome for individuals in group B would be if their mediator values were 

re-distributed to the mediator distribution of group A in that same confounder stratum. To do this, 

we would estimate the expected value of the outcome for group B individuals for each value of the 

mediator found in the mediator distribution of group A individuals in that same confounder stratum 

𝑓𝑀|𝐶=𝑐
𝐴 . We would then multiply these stratum-specific counterfactual-expected outcome values by 

the share of the stratum with that specific value of the mediator in group A (𝑃(𝑀 = 𝑚|𝐶 = 𝑐, 𝐴)) 

and then sum across strata of 𝑀 and 𝐶. This second step matches the distribution between groups by 

equalizing the share of individuals with each value of 𝑚 in group B to that share in group B (within 

confounder strata).  

 At this point, estimating the decomposition first defined in Eq. 1.requires the following three 

quantities: 𝐸[𝑌𝐴], t 𝐸[𝑌𝐵], and 𝐸[𝑌𝐵(𝑀~𝑓𝑀
𝐴)]. Inserting these quantities into Eq. (1) leads to our 

analytic expression for the contribution of the mediator 𝑀 to group differences in the outcome 𝑌:   

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 1 −
𝐸[𝑌𝐵(𝑀~𝑓𝑀

𝐴)] − 𝐸[𝑌𝐴]

𝐸[𝑌𝐵] − 𝐸[𝑌𝐴]
 (6) 
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